

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Software Engineering

Course

Field of study

Bioinformatics

Area of study (specialization)

Level of study
First-cycle studies
Form of study

full-time

Year/Semester

3/5

Profile of study

general academic

Course offered in
Polish

Requirements

compulsory

 Number of hours

Lecture

15

Tutorials

Laboratory classes

30

Projects/seminars

Other (e.g. online)

Number of credit points

4

Lecturers

Responsible for the course/lecturer:

dr inż. Mirosław Ochodek

email: Miroslaw.Ochodek@cs.put.poznan.pl

tel. 61 665 2944

Wydział Informatyki i Telekomunikacji

ul. Piotrowo 3, 60-965 Poznań

Responsible for the course/lecturer:

dr hab. inż. Piotr Zielniewicz

email: pzielniewicz@cs.put.poznan.pl

Wydział Informatyki i Telekomunikacji

ul. Piotrowo 3, 60-965 Poznań

 Prerequisites

The student starting this course should have basic knowledge of the fundamental of programming, tools

used in computer science, algorithms and data structures, object-oriented programming. In addition,

s/he should have the ability to solve basic problems in the field of programming and the ability to obtain

information from the indicated sources.

Course objective

1) Provide students with basic knowledge of software engineering regarding: managing software

projects, defining requirements, system modeling, software design, quality assurance (including

software testing), software development support tools (including version control tools)

2

2) Developing students' skills in solving simple problems in the field of design, construction and testing

of software, the use of software support tools, modifying and using programming components.

3) Developing students' skills so they can fulfill the roles of analysts / designers / programmers in a

sofwtare development teams (also using agile methodologies).

Course-related learning outcomes

Knowledge

1. Has a basic knowledge regarding IT project management.

2. Has basic knowledge of requirements engineering (functional requirements, use cases, non-functional

requirements).

3. Has basic knowledge of modeling and software design.

4. Has a basic knowledge of software verification and validation methods.

Skills

1. Is able to specify functional and non-functional requirements.

2. Is able to create a prototype of an application user interface.

3. Is able to create object models in the UML notation (classes, state machine, sequence).

4. Is able to create test cases and automate them (unit tests).

5. Is able to organize work in a software development team.

6. Is able to use the integrated programming environment.

Social competences

1. Is able to interact and work in a software development team.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Forming Assessment:

a) lectures: on the basis of answers to questions and participation in quizzes during the classes

b) laboratory: based on the evaluation of the progress in the implementation of tasks during the classes

Summative assessment:

In terms of the assessment of the learning outcomes concerning the acquired skills and social

competences (mainly the assessment of laboratory classes):

a) the final grade consists of two components: the evaluation of a mini-project implementation (50%)

and a test (50%). The test consists of both test questions (multiple choice) and open-ended tasks

(developing a UML diagram, writing a code fragment for unit testing).

3

In terms of learning outcomes related to the acquired knowledge:

a) during the lectures, students solve quizzes and short problem tasks. For providing an acceptable

solution (depending on its form and nature), a student receives 1%.

b) multiple choice test including single-choice questions (one correct answer) and questions with

possibly one or more correct answers (the question type is explicitly indicated in the test). The student

receives 1 point for answering the question correctly. Points are converted to a percentage scale.

Based on the percentage points obtained (from the election test and during the lecture), the final grade

is determined according to the scale:

- >= 90% - 5,0

- <80%, 90%) - 4,5

- <70%, 80%) - 4,0

- <60%, 70%) - 3,5

- <50%, 60%) - 3,0

- mniej niż 50% - 2,0

Programme content

The course program covers the following topics:

- Introduction to software engineering and the course, including the discussion of importance and role

of software development in the modern world, vision of an IT project, consequences of software

failures, the scope of software engineering

- Version management systems (Git)

- Functional and non-functional requirements and business process modeling

- Software modeling and analysis (including UML notation)

- Software prototyping

- Software design

- Project management methodologies (Scrum)

- Software testing (unit and acceptance)

The laboratory program covers the following topics:

- Software configuration management tools (Git)

- User interface prototyping

4

- Documenting requirements (use cases, user stories)

- Modeling of systems in the UML notation

- Software testing - unit testing

- Practical implementation of a mini-project

- Project patterns

Teaching methods

Teaching methods include:

a) lecture: multimedia presentation, presentation illustrated with examples given on the board, solving

problems, case studies.

b) laboratory exercises: problem solving, practical exercises, discussion, team work, multimedia show,

workshops, demonstration and implementation of a mini-project.

Bibliography

Basic

1. I. Sommerville, Inżynieria oprogramowania, Wydawnictwo Naukowe PWN, 2020

2. A. Jaszkiewicz, Inżynieria oprogramowania, Helion, 1997.

3. K. Schwaber, J. Sutherland, The Scrum Guide: Przewodnik po Scrumie: Reguły Gry,

http://www.scrumguides.org, (dostępny online), 2017.

Additional

1. Wzorce projektowe w języku Java: https://www.tutorialspoint.com/design_pattern

2. Kopczyńska, Sylwia, Jerzy Nawrocki, and Mirosław Ochodek. An Empirical Study on Catalog of Non-

functional Requirement Templates: Usefulness and Maintenance Issues. Information and Software

Technology (2018).

3. Nawrocki, Jerzy, et al. Agile requirements engineering: A research perspective. International

Conference on Current Trends in Theory and Practice of Informatics. Springer, Cham, 2014.

Breakdown of average student's workload

 Hours ECTS

Total workload 100 4,0

Classes requiring direct contact with the teacher 45 2,0

Student's own work (literature studies, work within the mini-
project, preparation of the knowledge test) 1

55 2,0

1
 delete or add other activities as appropriate

